The rheology of three-phase suspensions at low bubble capillary number

نویسندگان

  • J. M. Truby
  • S. P. Mueller
  • E. W. Llewellin
  • H. M. Mader
چکیده

We develop a model for the rheology of a three-phase suspension of bubbles and particles in a Newtonian liquid undergoing steady flow. We adopt an 'effective-medium' approach in which the bubbly liquid is treated as a continuous medium which suspends the particles. The resulting three-phase model combines separate two-phase models for bubble suspension rheology and particle suspension rheology, which are taken from the literature. The model is validated against new experimental data for three-phase suspensions of bubbles and spherical particles, collected in the low bubble capillary number regime. Good agreement is found across the experimental range of particle volume fraction ([Formula: see text]) and bubble volume fraction ([Formula: see text]). Consistent with model predictions, experimental results demonstrate that adding bubbles to a dilute particle suspension at low capillarity increases its viscosity, while adding bubbles to a concentrated particle suspension decreases its viscosity. The model accounts for particle anisometry and is easily extended to account for variable capillarity, but has not been experimentally validated for these cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rheology of bubble-bearing magmas

The rheology of bubble-bearing suspensions is investigated through a series of three-dimensional boundary integral calculations in which the effects of bubble deformation, volume fraction, and shear rate are considered. The behaviour of bubbles in viscous flows is characterized by the capillary number, Ca, the ratio of viscous shear stresses that promote deformation to surface tension stresses ...

متن کامل

Capillary forces in suspension rheology.

The rheology of suspensions (solid particles dispersed in a fluid) is controlled primarily through the volume fraction of solids. We show that the addition of small amounts of a secondary fluid, immiscible with the continuous phase of the suspension, causes agglomeration due to capillary forces and creates particle networks, dramatically altering the bulk rheological behavior from predominantly...

متن کامل

An Insight into Colloidal Gas Aphron Drainage Using Electrical Conductivity Measurement

In the present  paper Electrical Conductivity (EC) of Colloidal Gas Aphron (CGA) suspensions was measured for anionic and cationic surfactants (Sodium Dodecyl Sulfate (SDS) and Tetradecyl Trimethyl Ammonium Bromide (TTAB)). Experiments were made for different concentrations of SDS (6, 8.1, 10 mM) and TTAB (2, 3.51, 5 mM). CGA drainage behavior was observed and measured using 1 liter measuri...

متن کامل

Mixtures of foam and paste: suspensions of bubbles in yield stress fluids

We study the rheological behavior of mixtures of foams and pastes, which can be described as suspensions of bubbles in yield stress fluids. Model systems are designed by mixing monodisperse aqueous foams and concentrated emulsions. The elastic modulus of the bubble suspensions is found to depend on the elastic capillary number Ca G , defined as the ratio of the paste elastic modulus to the bubb...

متن کامل

A method for bubble volume measurement under constant flow conditions in gas–liquid two-phase flow

Measuring the volume of a bubble, especially at its detachment, is a basic subject in gas-liquid two-phase flow research. A new indirect method for this measurement under constant flow conditions is presented. An electronic device is designed and constructed based on laser beam intensity. This device calculates the frequency of the bubble formation by measuring the total time of the formation p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 471  شماره 

صفحات  -

تاریخ انتشار 2015